Homa Rashidisabet

★ http://homairs.homepage Initial linkedin.com/homarashidisabet ♠ https://github.com/HomaiRS ► hrashi4@uic.edu		∂ May 2024
Education	University of Illinois Chicago (UIC), Chicago, IL Ph.D. in: Biomedical engineering	Spring 2021 - (Expected) Fall 202
	Area of research: Biomedical Computer Vision University of Illinois Chicago (UIC), Chicago, IL MS. in: Biomedical engineering	Fall 2018 - Spring 2021
	Area of research: Artificial Intelligence University of Tehran (UT), Tehran, Iran B.Sc. in: Applied Mathematics	Fall 2012 - Spring 2016
Work Experience	 Working as Research Assistant at Artificial Intelligence In Ophthalmology (AI-O) Center, Department of Ophthalmology and Visual Sciences, University of Illinois Chicago. 	Feb 2021 - Present
	 Worked as AI Scientist Intern at Carl Zeiss Meditec, Inc. Worked as Research Assistant at BiAffect, a university startup company, University of Illinois Chicago. Worked as Research and Development Data Scientist intern at Johnson and Johnson (JnJ), Inc. Worked as Teaching Assistant (TA) at Bioengineering Department, University of Illinois Chicago. Worked as TA at Department of Mathematics, Statistics, and Computer Science, University of Tehran. 	May - Dec 2022 Jan 2019 - Jan 2021 May - Sep 2020 Spring 2019- 2021 Fall 2015
RESEARCH INTEREST	 Using AI to transform medicine from a reactive to a proactive discipline. Developing AI methods for abnormality detection from biomedical images, and timeseries signals. Improving certainty and generalizability of AI models for a potential clinical translation. 	
JOURNAL PUBLICATION	 Rashidisabet, H., Sethi, A., Jindarak, B., Edmonds, D., Chan, P., Leiderman, Y., Vajaranant, T., Yi, D. Validating the Generalizability of Ophthalmic Artificial Intelligence Models on Real-World Clinical Data. Translational Vision Science & Technology. Link 	Nov 2023
	 S. Vairavan, Rashidisabet, H., [and 11 others, including Vaibhav A. Narayan]. Personalized Relapse Prediction in Patients with Major Depressive Disorder using Digital Biomarkers. <i>Scientific Reports</i>. Link Rashidisabet, H., Vajaranant, T., Yi, D. A Systematic Review on Glaucoma Diagnosis Using Ophthalmic 	Oct 2023 April 2023
	 Imaging Data via Deep Learning. Eye. Link Hussain, F., Stange, J.P., Langenecker, S.A., McInnis, M.G., Zulueta, J., Piscitello, A., Ross, M.K., Demos, A.P., Vesel, C., Rashidisabet, H., and Cao, B. Passive Sensing of Affective and Cognitive Functioning in Mood Disorders by Analyzing Keystroke Kinematics and Speech Dynamics. In Digital Phenotyping and Mobile Sensing (pp. 229-258). Springer, Cham. Link 	July 2022
	 Rashidisabet, H., Ajilore, O., Leow, A., and Demos, A. Revisiting Power-Law Estimation with Applications to Real-World Human Typing Dynamics. <i>Physica A: Statistical Mechanics and its Applications</i>. Link Rashidisabet, H., Thomas, P., Ajilore, O., Zulueta, J., Moore, R., Leow, A. A Systems Biology Approach to 	April 2022 July 2020
	 The Digital Behaviorome. A Current Opinion in Systems Biology. Link Vesel, C., Rashidisabet, H., [and 16 others, including Leow, A.]. Effects of Mood and Aging on Keystroke Dynamics Metadata and Their Diurnal Patterns in A Large Open-Science Sample: A BiAffect iOS Study. Journal of the American Medical Informatics Association. Link 	May 2020
Working Paper	 Rashidisabet, H., Chan, P., Vajaranant, T., Yi, D. Out-of-Distribution Detection via Uncertainty Quantification in AI-Aided Glaucoma Diagnosis. Under-review at International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Rashidisabet, H., Chan, P., Leiderman, Y., Vajaranant, T., Yi, D. An Innovative Approach for Improving Glaucoma and Diabetic Retinopathy Classification Performance in Small Data Regime via Segmentation. In preparation for submission to PLOS One. Rashidisabet, H., Chan, P., Leiderman, Y., Vajaranant, T., Yi, D. Self-Censorship via Uncertainty-Aware Deep Learning for Reliable Glaucoma Prediction. In preparation for submission to Translational Vision Science & Technology. 	March 2024
TECHNICAL SKILL	 Programming language: Fluent in Python, and R. Experienced in C++, and Java Python package: NumPy, Pandas, SciPy, scikit-learn, PyTorch, Nevergrad, PyOD, Matplotlib R package: dplyr, corrplot, psych, caret, logspline, fitdistrplus, lme4, lmerTest 	Since 2018

Award and honor	 Won the UIC Biomedical Engineering Research Assistant Superior Performance (RASP) Award for out- standing achievement, endorsed by faculty and the Department Head of Biomedical Engineering at UIC, Chicago, IL. 	Spring 2024
	 Won David R. Pepperberg Award for Best Scientific Presentation at ARVO 2022 conference from Department of Ophthalmology and Visual Sciences, UIC, Chicago, IL. 	Spring 2022
	 Won travel grant award in National Network of Depression Centers (NNDC) conference. 	Fall 2019
	 Doctoral scholarship, Department of Biomedical Engineering, UIC, Chicago, IL. 	Since Fall 2018
	 Governmental scholarship, Department of Mathematics, Statistics and Computer Science, UT, Iran. 	2012 - 2016
SERVICE	Reviewer for Springer Nature Ophthalmology and Therapy.	April 2023 - Present
	 Reviewer for Medical Physics Journal. 	Jan 2022 - Present
	 Reviewer for NewInML @ ICML 2022 workshop. Link 	May 2022 - Present
	 Reviewer for NewInML @ NeurIPS 2021 workshop. Link 	Sep 2021 - Present
	 Reviewer for NewInML @ NeurIPS 2020 workshop. Link 	Sep 2020 - Sep 2021
RESEARCH	Biomedical Computer Vision	
EXPERIENCE	 Proposed a domain adaptation model to enhance generalization on Out-of-Distribution fundus images gathered from diverse institutions, varying protocols, and diverse patient populations. 	Jan 2024 - Present
	 Developed a novel parameter-free algorithm through uncertainty quantification to self-censor network's unreliable predictions that are associated with high uncertainty when the model does not have enough information to make a confident decisions for glaucoma prediction using fundus images. 	Jan 2024 - April 2024
	 Proposed an Out-of-Distribution detection approach though a deep evidential uncertainty quantification to mitigate the Softmax overconfidence avoiding to pose unreliable glaucoma diagnosis risk at patients. 	Feb 2022 - Jan 2024
	 Customized the Classification via Segmentation (CvS) method for addressing the small-labeled data challenge in glaucoma and diabetic retinopathy classification applications using fundus images. 	Dec 2022 - Present
	 Proposed self-supervised deep learning-based models (e.g., SimCLR, DINO) for accurate classification of eight distinct abnormalities in B-scan images obtained from volumetric OCT data, where a vast majority of the data was unlabeled, with only a small portion labeled. 	May 2022 - Dec 2022
	 Proposed a robust and generalizable segmentation model utilizing vision transformers (ViT) to accurately 	Aug 2022 - Dec 2022
	 segment subtle retinal layers in OCT images, showcasing efficacy across diverse devices and scan patterns. Proposed a semi-supervised deep learning model via label propagation to segment the Optic Nerve Head in fundus images, even with as few as 2 labeled images, addressing small-labeled data challenges. 	March 2021 - Sep 2022
	 Proposed generalizable and explainable deep learning models for Optic Nerve Head segmentation and 	Feb 2021 - June
	glaucoma classification in fundus images, leveraging the Grad-CAM technique, hyper-parameter tuning,	2022
	augmentation, regularization, and transfer learning to enhance performance and interpretability.	
	Biomedical Data Science	
	 Developed a novel Long Short-Term Memory-based Encoder-Decoder method, termed EncDec-AD, for 	May 2020- June
	multi-variate time-series Anomaly Detection, enabling high-accuracy prediction of depression relapse	2022
	at an individual patient level 21 days in advance, utilizing sensor time-series big data collected through wearable devices every 30 milliseconds over one year.	
	 Benchmarked our EncDec-AD method against more than 10 different machine learning anomaly detec- 	May 2020- June
	tion methods available in the PyOD Python package (e.g., LSCP, XGBOD, VAE, IForest, and kNN).	2022
	 Leveraged a diverse range of supervised and unsupervised machine learning methods for data mining and feature engineering from raw time series and text data collected through typing on smartphone devices 	Feb 2019- Jan 2020
	or accelerometer data from wearable watch devices.	
	 Developed a novel statistical method to reliably model the smartphone keyboard typing interactions at the individual user level as a power law distribution, utilizing features engineered from raw sensor timeseries 	March 2020 - April 2022
	big data collected from smartphone devices, including metrics such as typing speed and typing delay.	
	 Modeled the associations between smartphone interaction, depression, age, and diurnal patterns using statistical mixed effect models using sensor data collected through smartphone keyboard typing data. 	Feb 2019 - May 2020
	I many and a discourse of a many includes a VANI Decision Tree Dandom Forest CVM VCR and and	E 1 0040 E 1 000

 $-\,$ Leveraged a diverse range of supervised (e.g., KNN, Decision Tree, Random Forest, SVM, XGboost) and

and bipolar disorders using sensor data.

 $unsupervised \ (e.g., GMM, K-Means) \ machine \ learning \ models \ to \ predict \ depression, \ depression \ relapse,$

Feb 2019 - Feb 2021

Presentation -	Rashidisabet , H., Chan, P., Vajaranant, T., Yi, D. Out-of-Distribution Detection via Uncertainty Learning for Robust Glaucoma Prediction. <i>Society for Imaging Informatics in Medicine (SIIM)</i> .	June 2024
_	Rashidisabet, H., Chan, P., Vajaranant, T., Yi, D. Out-of-Distribution Detection via Uncertainty Learning for Robust Glaucoma Prediction. <i>The Association for Research in Vision and Ophthalmology (ARVO).</i>	May 2024
_	Rashidisabet, H., Chan, P., Vajaranant, T., Yi, D. Out-of-Distribution Detection via Uncertainty Learning for Robust Glaucoma Prediction. <i>The Collaborative Community on Ophthalmic Imaging Foundation (CCOI)</i> . Link	Jan 2024
_	Rashidisabet, H., Vajaranant, T., Yi, D. Generalizable AI-Based Glaucoma Prediction via A Stable Model Selection Method. <i>American Academy of Ophthalmology (AAO)</i> . Link	Oct 2023
_	Rashidisabet, H., Vajaranant, T., Yi, D. Generalizable AI-Based Glaucoma Prediction via A Stable Model Selection Method. <i>ARVO</i> . Link	April 2023
_	Rashidisabet, H., Chan, P., Vajaranant, T., Yi, D. Real-World Data Generalization for Glaucoma Prediction. ARVO. Link	May 2022
_	Rashidisabet , H., Sethi, A., Jindarak, B., Edmonds, D., Chan, P., Vajaranant, T., Yi, D. Importance of Generalizations to Clinical Settings through Glaucoma Classification and Optic Nerve Segmentation. <i>AAO</i> .	Oct 2022
-	Rashidisabet, H., Vajaranant, T., Aref A., Edward D., Yi, D. AI-Based Glaucoma Prediction in Glaucoma	Nov 2022
-	Suspects. American Glaucoma Society (AGS). Rashidisabet, H., Sethi, A., Jindarak, B., Edmonds, D., Chan, P., Vajaranant, T., Yi, D. Validating the Generalizability of Ophthalmic Artificial Intelligence Models on Real World Clinical Data. Invited talk at 30th Glaucoma Symposium, UIC.	May 2022
_	Rashidisabet, H., [and 16 others, including Leow, A.]. Characterizing Passively Collected Real-World Keyboard Dynamics in Mood Disorders as A Function of Age and Time-of-Day. <i>Biological Psychiatry</i> .	May 2020
_	Link Vesel, C., Rashidisabet, H., [and 16 others, including Leow, A.]. Diurnal Patterns as Evidenced by Over	Dec 2019
	Eleven Million Smartphone Keystrokes During Daily Usage: An iOS BiAffect Study. Award-winning	
	poster in Annual National Network of Depression Centers Conference; Ann Arbor, MI. Link. This poster is	
	also presented at ACNP 58th Annual Meeting: Poster Session II. Neuropsychopharmacol. Link	

 Vesel, C., Rashidisabet, H., [and 16 others, including Leow, A.]. Diurnal Patterns As Evidenced by Over Eleven Million Smartphone Keystrokes During Daily Usage: An iOS BiAffect Study. Poster presented at

ACNP 58th Annual Meeting: Poster Session II. Neuropsychopharmacol 2019. Link