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• Glaucoma is one of the leading causes of irreversible blindness globally. 

• Deep learning (DL) has emerged as a promising approach for the automated diagnosis of 
glaucoma. 

• Challenges persist in translating these advancements to clinical settings. Conventional DL 
classification methods often exhibit overconfidence and lack robustness when faced with a 
shift in training data distribution, posing challenges in out-of-distribution (OOD) scenarios. 

• These issues raise concerns about the suitability of current glaucoma DL diagnostic 
algorithms for real-world clinical deployment, potentially impacting patient safety. 

DATA
• We trained our deep learning models on 712 fundus images from the Illinois Eye and Ear 

Infirmary

• We evaluated the models on 8 public fundus datasets and 5 non-medical image datasets

RESULTS

OOD DETECTION RESULTS

TABLE 1
OOD detection results for Dirichlet versus softmax model. Max performance in bold.
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• We showed that when an image is far away from training samples, 
conventional deep learning models using the Softmax function:

• Fail to provide reliable predictions

• Experience a loss of performance

• Our proposed uncertainty-aware Dirichlet model effectively outperforms 
the Softmax model in the OOD detection task

• Our proposed method achieves comparable glaucoma classification 
performance across diverse domains, extending its utility beyond the initial 
training dataset

• Our proposed method mitigates over-confident glaucoma diagnosis and 
improves the reliability of conventional models for glaucoma assessment

• Incorporation of uncertainty scores in our model could alert users to 
instances where the model lacks sufficient information for a confident 
decision

SUPPORT
FIGURE 3
Histogram of maximum probabilities predicted by Dirichlet versus Softmax models. Evaluation on (A) CIFAR-10 OOD image dataset, and (B) IDRID OOD 
fundus image dataset.
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FIGURE 1
Glaucoma classification models. (A) Schematic illustration of base architecture, VGG-16 feature extractor. 
(B) Baseline softmax classifier. (C) Proposed Dirichlet classifier.

FIGURE 2
Proposed Out-of-Distribution (OOD) detection through uncertainty quantification pipeline.


