

Out-of-Distribution Detection via Uncertainty Learning for Robust Glaucoma Prediction

Homa Rashidisabet^{1,3}, R.V. Paul Chan^{2,3}, Thasarat Sutabutr Vajaranant^{2,3}, Darvin Yi^{1,2,3} ¹ Department of Biomedical Engineering, University of Illinois Chicago, 851 S Morgan St, Chicago, IL 60607 ² Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois Chicago

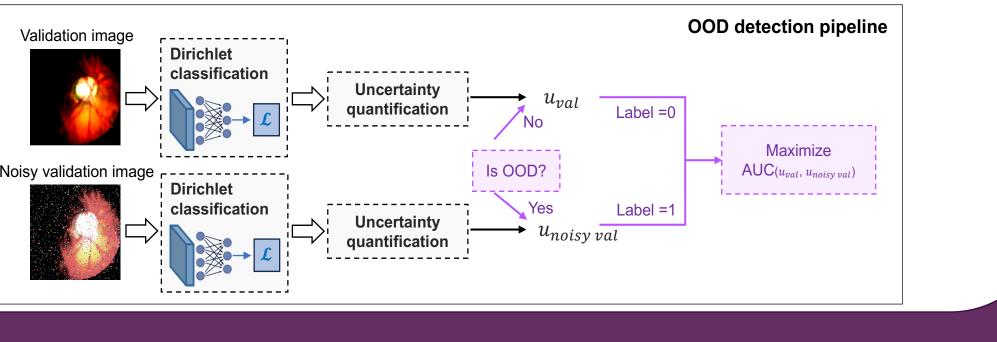
³ Artificial Intelligence in Ophthalmology (Ai-O) Center, University of Illinois Chicago

Introduction

- Glaucoma is one of the leading causes of irreversible blindness globally.
- Deep learning (DL) has emerged as a promising approach for the automated diagnosis of glaucoma.
- Challenges persist in translating these advancements to clinical settings. Conventional DL classification methods often exhibit overconfidence and lack robustness when faced with a shift in training data distribution, posing challenges in out-of-distribution (OOD) scenarios.
- These issues raise concerns about the suitability of current glaucoma DL diagnostic algorithms for real-world clinical deployment, potentially impacting patient safety.

Hypothesis

When an image is far away from training samples, conventional deep learning models may:


- Fail to provide reliable predictions
- Experience a loss of performance

Objective

Our proposed approach aims to improve the reliability of glaucoma predictions by:

- Effectively identifying OOD samples
- Mitigating the overconfidence of conventional deep learning models on OOD data

- We evaluated the models on 2 public fundus datasets: REFUGE and LAG, and 2 non-medical image datasets: CIFAR-10 and Fashion-MNIST

Dataset

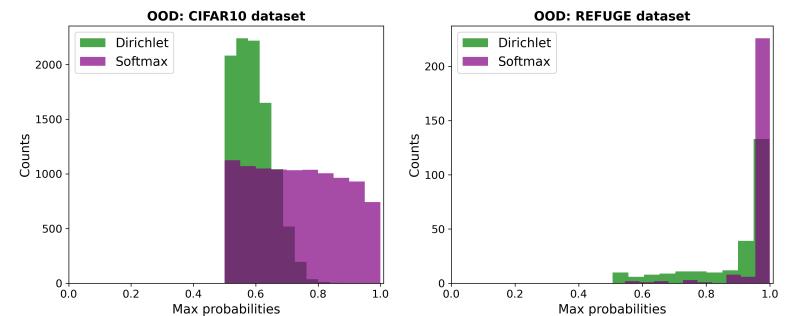
REFUGE LAG CIFAR10 Fashion-MNIST

UIC UNIVERSITY OF ILLINOIS COLLEGE OF MEDICINE

Data

• We trained our deep learning models on 712 fundus images from the Illinois Eye and Ear Infirmary

Method


• We propose an Out-of-Distribution (OOD) detection method, which we will call the Dirichlet model • Our baseline is a Convolutional Neural Network model, which we will refer to as the Softmax model Both Dirichlet and Softmax models classifying images as glaucoma/non-glaucoma

All work done for this project was supported by the Research to Prevent Blindness (RPB) Foundation.

Results

• Our proposed model consistently outperforms the softmax model in OOD detection • Our proposed model maintains competitive glaucoma classification compared to softmax

		Mean AUC with [95% CI] on OOD data				
ls fundus?	Glaucoma s? labels?	OOD detection			Glaucoma classification	
		Dirichlet	Softmax		Dirichlet	Softmax
~	~	64.4 [63.2, 65.6]	59.4 [58.4, 60.3]		91.2 [90.7, 91.9]	89.9 [89.4, 90.7]
✓	✓	60.0 [59.5, 60.3]	42.4 [41.9, 42.7]		86.7 [86.6, 86.7]	86.1 [86.0, 86.2]
x	x	95.3 [95.3, 95.4]	92.9 [92.8, 92.9]		-	-
x	x	98.0 [97.9, 98.0]	95.1 [95.0, 95.1]		-	-

RICHARD AND LOAN HILL UIC DEPARTMENT OF BIOENGINEERING

Conclusions

• We showed that our proposed uncertainty aware Dirichlet model effectively outperforms Softmax model in OOD detection

• Our proposed method achieves comparable glaucoma classification performance across diverse domains, extending its utility beyond the initial training dataset

• Our proposed method mitigates over-confident glaucoma diagnosis and improves reliability of conventional models

• Incorporation of uncertainty scores in our model alerts users to instances where the model lacks sufficient information for a confident decision

Support

Research to Prevent Blindness

• Our Dirichlet model mitigates overconfidence in contrast to softmax model